Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers

The LANL Shear Campaign uses millimeter-scale initially solid shock tubes on the National Ignition Facility to conduct high-energy-density hydrodynamic plasma experiments, capable of reaching energy densities exceeding 100 kJ/cm3. These shock-tube experiments have for the first time reproduced spont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-05, Vol.25 (5)
Hauptverfasser: Flippo, K. A., Doss, F. W., Merritt, E. C., DeVolder, B. G., Di Stefano, C. A., Bradley, P. A., Capelli, D., Cardenas, T., Desjardins, T. R., Fierro, F., Huntington, C. M., Kline, J. L., Kot, L., Kurien, S., Loomis, E. N., MacLaren, S. A., Murphy, T. J., Nagel, S. R., Perry, T. S., Randolph, R. B., Rasmus, A., Schmidt, D. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The LANL Shear Campaign uses millimeter-scale initially solid shock tubes on the National Ignition Facility to conduct high-energy-density hydrodynamic plasma experiments, capable of reaching energy densities exceeding 100 kJ/cm3. These shock-tube experiments have for the first time reproduced spontaneously emergent coherent structures due to shear-based fluid instabilities [i.e., Kelvin-Helmholtz (KH)], demonstrating hydrodynamic scaling over 8 orders of magnitude in time and velocity. The KH vortices, referred to as “rollers,” and the secondary instabilities, referred to as “ribs,” are used to understand the turbulent kinetic energy contained in the system. Their evolution is used to understand the transition to turbulence and that transition's dependence on initial conditions. Experimental results from these studies are well modeled by the RAGE (Radiation Adaptive Grid Eulerian) hydro-code using the Besnard-Harlow-Rauenzahn turbulent mix model. Information inferred from both the experimental data and the mix model allows us to demonstrate that the specific Turbulent Kinetic Energy (sTKE) in the layer, as calculated from the plan-view structure data, is consistent with the mixing width growth and the RAGE simulations of sTKE.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.5027194