High-pressure dielectric studies on 1,6-anhydro-β-D-mannopyranose (plastic crystal) and 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose (canonical glass)

Broadband Dielectric Spectroscopy was applied to investigate molecular dynamics of two anhydrosaccharides, i.e., 1,6-anhydro-β-D-mannopyranose, anhMAN (hydrogen-bonded system) and 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose, ac-anhGLU (van der Waals material), at different thermodynamic conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-05, Vol.148 (20), p.204510-204510
Hauptverfasser: Heczko, Dawid, Kamińska, Ewa, Minecka, Aldona, Dzienia, Andrzej, Jurkiewicz, Karolina, Tarnacka, Magdalena, Talik, Agnieszka, Kamiński, Kamil, Paluch, Marian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Broadband Dielectric Spectroscopy was applied to investigate molecular dynamics of two anhydrosaccharides, i.e., 1,6-anhydro-β-D-mannopyranose, anhMAN (hydrogen-bonded system) and 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose, ac-anhGLU (van der Waals material), at different thermodynamic conditions. Moreover, the reported data were compared with those recently published for two other H-bonded systems, i.e., 1,6-anhydro-β-D-glucopyranose (anhGLU) and D-glucose (D-GLU). A direct comparison of the dynamical behavior of the materials with a similar chemical structure but significantly differing by the degrees of freedom, complexity, and intermolecular interactions made it possible to probe the impact of compression on the fragility, Temperature-Pressure Superpositioning and pressure coefficient of the glassy crystal/glass transition temperatures (dTgc/dp ; dTg/dp). Moreover, the correlation between dTgc/dp determined experimentally from the high-pressure dielectric data and the Ehrenfest equation has been tested for the plastic crystals (anhGLU and anhMAN) for the first time. Interestingly, a satisfactory agreement was found between both approaches. It is a quite intriguing finding which can be rationalized by the fact that the studied materials are characterized by the low complexity (lower degrees of freedom with respect to the molecular mobility) as well as ordered internal structure. Therefore, one can speculate that in contrast to the ordinary glasses the dynamics of the plastic crystals might be described with the use of a single order parameter. However, to confirm this thesis further, pressure-volume-temperature (PVT) experiments enabling calculations of the Prigogine Defay ratio are required.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5032209