Faint High-Latitude Carbon Stars Discovered by the Sloan Digital Sky Survey: An Initial Catalog
A search of more than 3,000 square degrees of high latitude sky by the Sloan Digital Sky Survey has yielded 251 faint high-latitude carbon stars (FHLCs), the large majority previously uncataloged. We present homogeneous spectroscopy, photometry, and astrometry for the sample. The objects lie in the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2004-02 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A search of more than 3,000 square degrees of high latitude sky by the Sloan Digital Sky Survey has yielded 251 faint high-latitude carbon stars (FHLCs), the large majority previously uncataloged. We present homogeneous spectroscopy, photometry, and astrometry for the sample. The objects lie in the 15.6 < r < 20.8 range, and exhibit a wide variety of apparent photospheric temperatures, ranging from spectral types near M to as early as F. Proper motion measurements for 222 of the objects show that at least 50%, and quite probably more than 60%, of these objects are actually low luminosity dwarf carbon (dC) stars, in agreement with a variety of recent, more limited investigations which show that such objects are the numerically dominant type of star with C_2 in the spectrum. This SDSS homogeneous sample of ~110 dC stars now constitutes 90% of all known carbon dwarfs, and will grow by another factor of 2-3 by the completion of the Survey. As the spectra of the dC and the faint halo giant C stars are very similar (at least at spectral resolution of 1,000) despite a difference of 10 mag in luminosity, it is imperative that simple luminosity discriminants other than proper motion be developed. We use our enlarged sample of FHLCs to examine a variety of possible luminosity criteria, including many previously suggested, and find that, with certain important caveats, JHK photometry may segregate dwarfs and giants. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0402118 |