The Annihilation theorem for the completely reducible Lie superalgebras
A well known theorem of Duflo claims that the annihilator of a Verma module in the enveloping algebra of a complex semisimple Lie algebra is generated by its intersection with the centre. For a Lie superalgebra this result fails to be true. For instance, in the case of the orthosymplectic Lie supera...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1999-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A well known theorem of Duflo claims that the annihilator of a Verma module in the enveloping algebra of a complex semisimple Lie algebra is generated by its intersection with the centre. For a Lie superalgebra this result fails to be true. For instance, in the case of the orthosymplectic Lie superalgebra osp(1,2), Pinczon gave in [Pi] an example of a Verma module whose annihilator is not generated by its intersection with the centre of universal enveloping algebra. More generally, Musson produced in [Mu1] a family of such "singular" Verma modules for osp(1,2l) cases. In this article we give a necessary and sufficient condition on the highest weight of a \(\osp(1,2l)\)-Verma module for its annihilator to be generated by its intersection with the centre. This answers a question of Musson. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.9904030 |