Existence, Uniqueness, Regularity and Long-term Behavior for Dissipative Systems Modeling Electrohydrodynamics
We study a dissipative system of nonlinear and nonlocal equations modeling the flow of electrohydrodynamics. The existence, uniqueness and regularity of solutions is proven for general \(\mathbf{L}^2\) initial data in two space dimensions and for small data in data in three space dimensions. The exi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a dissipative system of nonlinear and nonlocal equations modeling the flow of electrohydrodynamics. The existence, uniqueness and regularity of solutions is proven for general \(\mathbf{L}^2\) initial data in two space dimensions and for small data in data in three space dimensions. The existence in three dimensions is established by studying a linearization of a relative entropy functional. We also establish the convergence to the stationary solution with a rate. |
---|---|
ISSN: | 2331-8422 |