Existence and Stability of Propagating Fronts for an Autocatalytic Reaction-Diffusion System

We study a one-dimensional reaction-diffusion system which describes an isothermal autocatalytic chemical reaction involving both a quadratic (A + B -> 2B) and a cubic (A + 2B -> 3B) autocatalysis. The parameters of this system are the ratio D = D_B/D_A of the diffusion constants of the reacta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1997-05
Hauptverfasser: Focant, Stephane, Gallay, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a one-dimensional reaction-diffusion system which describes an isothermal autocatalytic chemical reaction involving both a quadratic (A + B -> 2B) and a cubic (A + 2B -> 3B) autocatalysis. The parameters of this system are the ratio D = D_B/D_A of the diffusion constants of the reactant A and the autocatalyst B, and the relative activity k of the cubic reaction. First, for all values of D > 0 and k >= 0, we prove the existence of a family of propagating fronts (or travelling waves) describing the advance of the reaction. In particular, in the quadratic case k=0, we recover the results of Billingham and Needham [BN]. Then, if D is close to 1 and k is sufficiently small, we prove using energy functionals that these propagating fronts are stable against small perturbations in exponentially weighted Sobolev spaces. This extends to our system part of the stability results which are known for the scalar Fisher equation.
ISSN:2331-8422
DOI:10.48550/arxiv.9705008