Understanding hydrogen and nitrogen doping on active defects in amorphous In-Ga-Zn-O thin film transistors

This work analyses the physics of active trap states impacted by hydrogen (H) and nitrogen (N) dopings in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) and investigates their effects on the device performances under back-gate biasing. Based on numerical simulation and interpretation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-06, Vol.112 (25)
Hauptverfasser: Li, Guoli, Abliz, Ablat, Xu, Lei, André, Nicolas, Liu, Xingqiang, Zeng, Yun, Flandre, Denis, Liao, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work analyses the physics of active trap states impacted by hydrogen (H) and nitrogen (N) dopings in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) and investigates their effects on the device performances under back-gate biasing. Based on numerical simulation and interpretation of the device transfer characteristics, it is concluded that the interface and bulk tail states, as well as the 2+ charge states (i.e., acceptors VO2+) related to oxygen vacancy (VO), are neutralized by the H/N dopants incorporation via an experimental plasma treatment. Moreover, the simulation reveals that an acceptor-like defect VOH has been induced by the H doping, to support the observed additional degradation of device subthreshold slope. Superior stability of the optimized a-IGZO TFTs under a proper amount of H/N doping is demonstrated by the decreased density of VO-related defects in simulation, where hole (VO0 donor) and electron trapping (Oi acceptor) occurs during the negative or positive bias stresses. This work benefit lies in an in-depth systematic understanding and exploration of the effects of the incorporation of the H and N dopants into the a-IGZO film for the TFTs improvement and optimization.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5032169