Inertial- and Dissipation-Range Asymptotics in Fluid Turbulence

We propose and verify a wave-vector-space version of generalized extended self similarity and broaden its applicability to uncover intriguing, universal scaling in the far dissipation range by computing high-order (\(\leq 20\/\)) structure functions numerically for: (1) the three-dimensional, incomp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1996-05
Hauptverfasser: Dhar, Sujan K, Sain, Anirban, Pandit, Rahul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and verify a wave-vector-space version of generalized extended self similarity and broaden its applicability to uncover intriguing, universal scaling in the far dissipation range by computing high-order (\(\leq 20\/\)) structure functions numerically for: (1) the three-dimensional, incompressible Navier Stokes equation (with and without hyperviscosity); and (2) the GOY shell model for turbulence. Also, in case (2), with Taylor-microscale Reynolds numbers \(4 \times 10^{4} \leq Re_{\lambda} \leq 3 \times 10^{6}\/\), we find that the inertial-range exponents (\(\zeta_{p}\/\)) of the order - \(p\/\) structure functions do not approach their Kolmogorov value \(p/3\/\) as \(Re_{\lambda}\/\) increases.
ISSN:2331-8422
DOI:10.48550/arxiv.9605007