Gaudin Model, Bethe Ansatz and Critical Level

We propose a new method of diagonalization of hamiltonians of the Gaudin model associated to an arbitrary simple Lie algebra, which is based on Wakimoto modules over affine algebras at the critical level. We construct eigenvectors of these hamiltonians by restricting certain invariant functionals on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1994-04
Hauptverfasser: Feigin, Boris, Frenkel, Edward, Reshetikhin, Nikolai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new method of diagonalization of hamiltonians of the Gaudin model associated to an arbitrary simple Lie algebra, which is based on Wakimoto modules over affine algebras at the critical level. We construct eigenvectors of these hamiltonians by restricting certain invariant functionals on tensor products of Wakimoto modules. In conformal field theory language, the eigenvectors are given by certain bosonic correlation functions. Analogues of Bethe ansatz equations naturally appear as Kac-Kazhdan type equations on the existence of certain singular vectors in Wakimoto modules. We use this construction to expalain a connection between Gaudin's model and correlation functions of WZNW models.
ISSN:2331-8422
DOI:10.48550/arxiv.9402022