Sinusoidal Signal Assisted Multivariate Empirical Mode Decomposition for Brain-Computer Interfaces
A brain-computer interface (BCI) is a communication approach that permits cerebral activity to control computers or external devices. Brain electrical activity recorded with electroencephalography (EEG) is most commonly used for BCI. Noise-assisted multivariate empirical mode decomposition (NA-MEMD)...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2018-09, Vol.22 (5), p.1373-1384 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A brain-computer interface (BCI) is a communication approach that permits cerebral activity to control computers or external devices. Brain electrical activity recorded with electroencephalography (EEG) is most commonly used for BCI. Noise-assisted multivariate empirical mode decomposition (NA-MEMD) is a data-driven time-frequency analysis method that can be applied to nonlinear and nonstationary EEG signals for BCI data processing. However, because white Gaussian noise occupies a broad range of frequencies, some redundant components are introduced. To solve this leakage problem, in this study, we propose using a sinusoidal assisted signal that occupies the same frequency ranges as the original signals to improve MEMD performance. To verify the effectiveness of the proposed sinusoidal signal assisted MEMD (SA-MEMD) method, we compared the decomposition performances of MEMD, NA-MEMD, and the proposed SA-MEMD using synthetic signals and a real-world BCI dataset. The spectral decomposition results indicate that the proposed SA-MEMD can avoid the generation of redundant components and over decomposition, thus, substantially reduce the mode mixing and misalignment that occurs in MEMD and NA-MEMD. Moreover, using SA-MEMD as a signal preprocessing method instead of MEMD or NA-MEMD can significantly improve BCI classification accuracy and reduce calculation time, which indicates that SA-MEMD is a powerful spectral decomposition method for BCI. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2017.2775657 |