Right coideal subalgebras in U^+_q(so_{2n+1})
We give a complete classification of right coideal subalgebras that contain all group-like elements for the quantum group \(U_q^+(\frak{so}_{2n+1}),\) provided that \(q\) is not a root of 1. If \(q\) has a finite multiplicative order \(t>4,\) this classification remains valid for homogeneous righ...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-08 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a complete classification of right coideal subalgebras that contain all group-like elements for the quantum group \(U_q^+(\frak{so}_{2n+1}),\) provided that \(q\) is not a root of 1. If \(q\) has a finite multiplicative order \(t>4,\) this classification remains valid for homogeneous right coideal subalgebras of the small Lusztig quantum group \(u_q^+(\frak{so}_{2n+1}).\) As a consequence, we determine that the total number of right coideal subalgebras that contain the coradical equals \((2n)!!,\) the order of the Weyl group defined by the root system of type \(B_n.\) |
---|---|
ISSN: | 2331-8422 |