Right coideal subalgebras in U^+_q(so_{2n+1})

We give a complete classification of right coideal subalgebras that contain all group-like elements for the quantum group \(U_q^+(\frak{so}_{2n+1}),\) provided that \(q\) is not a root of 1. If \(q\) has a finite multiplicative order \(t>4,\) this classification remains valid for homogeneous righ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-08
1. Verfasser: Kharchenko, Vladislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a complete classification of right coideal subalgebras that contain all group-like elements for the quantum group \(U_q^+(\frak{so}_{2n+1}),\) provided that \(q\) is not a root of 1. If \(q\) has a finite multiplicative order \(t>4,\) this classification remains valid for homogeneous right coideal subalgebras of the small Lusztig quantum group \(u_q^+(\frak{so}_{2n+1}).\) As a consequence, we determine that the total number of right coideal subalgebras that contain the coradical equals \((2n)!!,\) the order of the Weyl group defined by the root system of type \(B_n.\)
ISSN:2331-8422