Criterion and Regions of Stability for Quasi-Equidistant Soliton Trains
Using the complex Toda chain (CTC) as a model for the propagation of the N-soliton pulse trains of the nonlinear Schrodinger (NLS) equation, we predict the asymptotic behavior of these trains. The following asymptotic regimes are stable: (i)~asymptotically free propagation of all N solitons; (ii)~bo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1997-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the complex Toda chain (CTC) as a model for the propagation of the N-soliton pulse trains of the nonlinear Schrodinger (NLS) equation, we predict the asymptotic behavior of these trains. The following asymptotic regimes are stable: (i)~asymptotically free propagation of all N solitons; (ii)~bound state regime where the N solitons may move quasi-equidistantly (QED); and (iii)~various different combinations of (i) and (ii). For N=2 and 3 we determine analytically the set of initial soliton parameters corresponding to each of these regimes. We find excellent agreement between the solutions of CTC and NLS for all regimes and propose realistic choices for the sets of amplitudes, for which the solitons propagate QED to very large run lengths. This is of importance for optical fiber communication. |
---|---|
ISSN: | 2331-8422 |