Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function

The purpose of this paper is to obtain an explicit solutions of the fractional Black–Scholes model with a weak payoff function. To do this, we derive fractional Black–Scholes equation by creating a self-financing portfolio strategy under Leland’s strategy. Then, we use the Mellin transform method fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2018-08, Vol.52 (2), p.685-706
Hauptverfasser: Mehrdoust, Farshid, Najafi, Ali Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to obtain an explicit solutions of the fractional Black–Scholes model with a weak payoff function. To do this, we derive fractional Black–Scholes equation by creating a self-financing portfolio strategy under Leland’s strategy. Then, we use the Mellin transform method for solving this equation and obtain the price of a European option as a particular case of the proposed solution. A sensitivity analysis is carried out through numerical experiments which shows the differences between Black–Scholes model and the fractional Black–Scholes model. Moreover, an empirical analysis shows that the fractional Black–Scholes model with Hurst exponent greater than one-half is more precise to predict the real market prices than the classical Black–Sholes model.
ISSN:0927-7099
1572-9974
DOI:10.1007/s10614-017-9715-3