A new explicit formula for Kerov polynomials

We prove a formula expressing the Kerov polynomial \(\Sigma_k\) as a weighted sum over the lattice of noncrossing partitions of the set \(\{1,...,k+1\}\). In particular, such a formula is related to a partial order \(\mirr\) on the Lehner's irreducible noncrossing partitions which can be descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-08
Hauptverfasser: Petrullo, P, Senato, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a formula expressing the Kerov polynomial \(\Sigma_k\) as a weighted sum over the lattice of noncrossing partitions of the set \(\{1,...,k+1\}\). In particular, such a formula is related to a partial order \(\mirr\) on the Lehner's irreducible noncrossing partitions which can be described in terms of left-to-right minima and maxima, descents and excedances of permutations. This provides a translation of the formula in terms of the Cayley graph of the symmetric group \(\frak{S}_k\) and allows us to recover the coefficients of \(\Sigma_k\) by means of the posets \(P_k\) and \(Q_k\) of pattern-avoiding permutations discovered by Bóna and Simion. We also obtain symmetric functions specializing in the coefficients of \(\Sigma_k\).
ISSN:2331-8422