A new explicit formula for Kerov polynomials
We prove a formula expressing the Kerov polynomial \(\Sigma_k\) as a weighted sum over the lattice of noncrossing partitions of the set \(\{1,...,k+1\}\). In particular, such a formula is related to a partial order \(\mirr\) on the Lehner's irreducible noncrossing partitions which can be descri...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a formula expressing the Kerov polynomial \(\Sigma_k\) as a weighted sum over the lattice of noncrossing partitions of the set \(\{1,...,k+1\}\). In particular, such a formula is related to a partial order \(\mirr\) on the Lehner's irreducible noncrossing partitions which can be described in terms of left-to-right minima and maxima, descents and excedances of permutations. This provides a translation of the formula in terms of the Cayley graph of the symmetric group \(\frak{S}_k\) and allows us to recover the coefficients of \(\Sigma_k\) by means of the posets \(P_k\) and \(Q_k\) of pattern-avoiding permutations discovered by Bóna and Simion. We also obtain symmetric functions specializing in the coefficients of \(\Sigma_k\). |
---|---|
ISSN: | 2331-8422 |