Fixed point and spectral characterization of finite dimensional C-algebras
We show that the following conditions on a C*-algebra are equivalent: (i) it has the fixed point property for nonexpansive mappings, (ii) the spectrum of every self adjoint element is finite, (iii) it is finite dimensional. We prove that (i) implies (ii) using constructions given by Goebel, that (ii...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the following conditions on a C*-algebra are equivalent: (i) it has the fixed point property for nonexpansive mappings, (ii) the spectrum of every self adjoint element is finite, (iii) it is finite dimensional. We prove that (i) implies (ii) using constructions given by Goebel, that (ii) implies (iii) using projection operator properties derived from the spectral and Gelfand-Naimark-Segal theorems, and observe that (iii) implies (i) by Brouwer's fixed point theorem. |
---|---|
ISSN: | 2331-8422 |