Self-training on refined clause patterns for relation extraction

Within the context of Information Extraction (IE), relation extraction is oriented towards identifying a variety of relation phrases and their arguments in arbitrary sentences. In this paper, we present a clause-based framework for information extraction in textual documents. Our framework focuses o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management 2018-07, Vol.54 (4), p.686-706
Hauptverfasser: Vo, Duc-Thuan, Bagheri, Ebrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the context of Information Extraction (IE), relation extraction is oriented towards identifying a variety of relation phrases and their arguments in arbitrary sentences. In this paper, we present a clause-based framework for information extraction in textual documents. Our framework focuses on two important challenges in information extraction: 1) Open Information Extraction and (OIE), and 2) Relation Extraction (RE). In the plethora of research that focus on the use of syntactic and dependency parsing for the purposes of detecting relations, there has been increasing evidence of incoherent and uninformative extractions. The extracted relations may even be erroneous at times and fail to provide a meaningful interpretation. In our work, we use the English clause structure and clause types in an effort to generate propositions that can be deemed as extractable relations. Moreover, we propose refinements to the grammatical structure of syntactic and dependency parsing that help reduce the number of incoherent and uninformative extractions from clauses. In our experiments both in the open information extraction and relation extraction domains, we carefully evaluate our system on various benchmark datasets and compare the performance of our work against existing state-of-the-art information extraction systems. Our work shows improved performance compared to the state-of-the-art techniques.
ISSN:0306-4573
1873-5371
DOI:10.1016/j.ipm.2017.02.009