Asymptotic Properties of Random Matrices of Long-Range Percolation Model

We study the spectral properties of matrices of long-range percolation model. These are N\times N random real symmetric matrices H=\{H(i,j)\}_{i,j} whose elements are independent random variables taking zero value with probability 1-\psi((i-j)/b), b\in \mathbb{R}^{+}, where \(\psi\) is an even posit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-04
1. Verfasser: Ayadi, Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the spectral properties of matrices of long-range percolation model. These are N\times N random real symmetric matrices H=\{H(i,j)\}_{i,j} whose elements are independent random variables taking zero value with probability 1-\psi((i-j)/b), b\in \mathbb{R}^{+}, where \(\psi\) is an even positive function with \psi(t)\le{1} and vanishing at infinity. We study the resolvent G(z)=(H-z)^{-1}, Imz\neq{0} in the limit N,b\to\infty, b=O(N^{\alpha}), 1/3
ISSN:2331-8422