Asymptotic Properties of Random Matrices of Long-Range Percolation Model
We study the spectral properties of matrices of long-range percolation model. These are N\times N random real symmetric matrices H=\{H(i,j)\}_{i,j} whose elements are independent random variables taking zero value with probability 1-\psi((i-j)/b), b\in \mathbb{R}^{+}, where \(\psi\) is an even posit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the spectral properties of matrices of long-range percolation model. These are N\times N random real symmetric matrices H=\{H(i,j)\}_{i,j} whose elements are independent random variables taking zero value with probability 1-\psi((i-j)/b), b\in \mathbb{R}^{+}, where \(\psi\) is an even positive function with \psi(t)\le{1} and vanishing at infinity. We study the resolvent G(z)=(H-z)^{-1}, Imz\neq{0} in the limit N,b\to\infty, b=O(N^{\alpha}), 1/3 |
---|---|
ISSN: | 2331-8422 |