Asymptotic behavior of some factorizations of random words

In this paper we consider the normalized lengths of the factors of some factorizations of random words. First, for the \emph{Lyndon factorization} of finite random words with \(n\) independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Azad, Elahe Zohoorian, Chassaing, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Azad, Elahe Zohoorian
Chassaing, Philippe
description In this paper we consider the normalized lengths of the factors of some factorizations of random words. First, for the \emph{Lyndon factorization} of finite random words with \(n\) independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distribution, we prove that the limit law of the normalized lengths of the smallest Lyndon factors is a variant of the stickbreaking process. Convergence of the distribution of the lengths of the longest factors to a Poisson-Dirichlet distribution follows. Secondly we consider the \emph{standard factorization} of random \emph{Lyndon word} : we prove that the distribution of the normalized length of the standard right factor of a random \(n\)-letters long Lyndon word, derived from such an alphabet, converges, when \(n\) is large, to: $$\mu(dx)=p_1 \delta_{1}(dx) + (1-p_1) \mathbf{1}_{[0,1)}(x)dx,$$ in which \(p_1\) denotes the probability of the smallest letter of the alphabet.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087640070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087640070</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876400703</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHgurEnbFG8iig_wXmKb0BTTrdlU0der4AM8DczMjCVCyk1W5UIsWErUA4AolSgKmbDtjp5-jBhdwy-m03eHgaPlhN5wq5uIwb10dDjQVwc9tOj5A0NLKza3-kom_XHJ1sfDeX_KxoC3yVCse5zC8Em1gEqVOYAC-d_1BgrNN14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087640070</pqid></control><display><type>article</type><title>Asymptotic behavior of some factorizations of random words</title><source>Free E- Journals</source><creator>Azad, Elahe Zohoorian ; Chassaing, Philippe</creator><creatorcontrib>Azad, Elahe Zohoorian ; Chassaing, Philippe</creatorcontrib><description>In this paper we consider the normalized lengths of the factors of some factorizations of random words. First, for the \emph{Lyndon factorization} of finite random words with \(n\) independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distribution, we prove that the limit law of the normalized lengths of the smallest Lyndon factors is a variant of the stickbreaking process. Convergence of the distribution of the lengths of the longest factors to a Poisson-Dirichlet distribution follows. Secondly we consider the \emph{standard factorization} of random \emph{Lyndon word} : we prove that the distribution of the normalized length of the standard right factor of a random \(n\)-letters long Lyndon word, derived from such an alphabet, converges, when \(n\) is large, to: $$\mu(dx)=p_1 \delta_{1}(dx) + (1-p_1) \mathbf{1}_{[0,1)}(x)dx,$$ in which \(p_1\) denotes the probability of the smallest letter of the alphabet.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Convergence ; Dirichlet problem</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Azad, Elahe Zohoorian</creatorcontrib><creatorcontrib>Chassaing, Philippe</creatorcontrib><title>Asymptotic behavior of some factorizations of random words</title><title>arXiv.org</title><description>In this paper we consider the normalized lengths of the factors of some factorizations of random words. First, for the \emph{Lyndon factorization} of finite random words with \(n\) independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distribution, we prove that the limit law of the normalized lengths of the smallest Lyndon factors is a variant of the stickbreaking process. Convergence of the distribution of the lengths of the longest factors to a Poisson-Dirichlet distribution follows. Secondly we consider the \emph{standard factorization} of random \emph{Lyndon word} : we prove that the distribution of the normalized length of the standard right factor of a random \(n\)-letters long Lyndon word, derived from such an alphabet, converges, when \(n\) is large, to: $$\mu(dx)=p_1 \delta_{1}(dx) + (1-p_1) \mathbf{1}_{[0,1)}(x)dx,$$ in which \(p_1\) denotes the probability of the smallest letter of the alphabet.</description><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHgurEnbFG8iig_wXmKb0BTTrdlU0der4AM8DczMjCVCyk1W5UIsWErUA4AolSgKmbDtjp5-jBhdwy-m03eHgaPlhN5wq5uIwb10dDjQVwc9tOj5A0NLKza3-kom_XHJ1sfDeX_KxoC3yVCse5zC8Em1gEqVOYAC-d_1BgrNN14</recordid><startdate>20211104</startdate><enddate>20211104</enddate><creator>Azad, Elahe Zohoorian</creator><creator>Chassaing, Philippe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211104</creationdate><title>Asymptotic behavior of some factorizations of random words</title><author>Azad, Elahe Zohoorian ; Chassaing, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876400703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Azad, Elahe Zohoorian</creatorcontrib><creatorcontrib>Chassaing, Philippe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azad, Elahe Zohoorian</au><au>Chassaing, Philippe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Asymptotic behavior of some factorizations of random words</atitle><jtitle>arXiv.org</jtitle><date>2021-11-04</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper we consider the normalized lengths of the factors of some factorizations of random words. First, for the \emph{Lyndon factorization} of finite random words with \(n\) independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distribution, we prove that the limit law of the normalized lengths of the smallest Lyndon factors is a variant of the stickbreaking process. Convergence of the distribution of the lengths of the longest factors to a Poisson-Dirichlet distribution follows. Secondly we consider the \emph{standard factorization} of random \emph{Lyndon word} : we prove that the distribution of the normalized length of the standard right factor of a random \(n\)-letters long Lyndon word, derived from such an alphabet, converges, when \(n\) is large, to: $$\mu(dx)=p_1 \delta_{1}(dx) + (1-p_1) \mathbf{1}_{[0,1)}(x)dx,$$ in which \(p_1\) denotes the probability of the smallest letter of the alphabet.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087640070
source Free E- Journals
subjects Asymptotic properties
Convergence
Dirichlet problem
title Asymptotic behavior of some factorizations of random words
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Asymptotic%20behavior%20of%20some%20factorizations%20of%20random%20words&rft.jtitle=arXiv.org&rft.au=Azad,%20Elahe%20Zohoorian&rft.date=2021-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087640070%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087640070&rft_id=info:pmid/&rfr_iscdi=true