Asymptotic behavior of some factorizations of random words

In this paper we consider the normalized lengths of the factors of some factorizations of random words. First, for the \emph{Lyndon factorization} of finite random words with \(n\) independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Azad, Elahe Zohoorian, Chassaing, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider the normalized lengths of the factors of some factorizations of random words. First, for the \emph{Lyndon factorization} of finite random words with \(n\) independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distribution, we prove that the limit law of the normalized lengths of the smallest Lyndon factors is a variant of the stickbreaking process. Convergence of the distribution of the lengths of the longest factors to a Poisson-Dirichlet distribution follows. Secondly we consider the \emph{standard factorization} of random \emph{Lyndon word} : we prove that the distribution of the normalized length of the standard right factor of a random \(n\)-letters long Lyndon word, derived from such an alphabet, converges, when \(n\) is large, to: $$\mu(dx)=p_1 \delta_{1}(dx) + (1-p_1) \mathbf{1}_{[0,1)}(x)dx,$$ in which \(p_1\) denotes the probability of the smallest letter of the alphabet.
ISSN:2331-8422