Tri-stage quasimonoenergetic proton acceleration from a multi-species thick target
We show that quasimonoenergetic proton beams can be generated through a multi-ion thick target irradiated by a circularly polarized laser pulse. After disrupted by the transverse instabilities in the laser pressure acceleration process, heavy ions as majority species can still provide a co-moving el...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2018-07, Vol.25 (7) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that quasimonoenergetic proton beams can be generated through a multi-ion thick target irradiated by a circularly polarized laser pulse. After disrupted by the transverse instabilities in the laser pressure acceleration process, heavy ions as majority species can still provide a co-moving electric field. Different from the dynamics using ultrathin foil, protons with small doped rates can experience a full tri-stage quasimonoenergetic acceleration (hole boring, sheath boosting, and free expansion stages) in this scenario. A theoretical model is developed to explain the proton energy evolution in detail and verified by two-dimensional particle-in-cell simulations. The scaling of proton energy with laser intensity indicates that the 200 MeV proton beam with narrow energy spread (3%–10%) and sufficiently large charges (1010–1011) required for medical applications can be obtained using 100s TW class laser systems in near future. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.5029556 |