Lichen Community Composition in Tawang District of Arunachal Pradesh, Tool for Long-Term Climate Change Monitoring

The lichen diversity in Tawang district of Arunachal Pradesh, India was studied in order to access the long-term effect of climate change in alpine regions of the area. The present study provides an enumeration of 122 species of lichens belonging to 47 genera and 24 families at five major sites of T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences, India. Section B: Biological sciences India. Section B: Biological sciences, 2018-09, Vol.88 (3), p.915-922
Hauptverfasser: Bajpai, Rajesh, Shukla, Vertika, Singh, C. P., Tripathi, O. P., Nayaka, S., Upreti, D. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lichen diversity in Tawang district of Arunachal Pradesh, India was studied in order to access the long-term effect of climate change in alpine regions of the area. The present study provides an enumeration of 122 species of lichens belonging to 47 genera and 24 families at five major sites of Tawang district of Arunachal Pradesh. Out of 5 sites, Mangalam Gompa (HSP 3), PTSO Lake (HSP 2) and Nagula (HSP 1) are the three highest summit point (HSPs), which have been designated as permanent long-term monitoring sites under the Indian Space Research Organization programme for monitoring the effect of climate change on Himalayan alpine ecosystem while two adjoining additional localities Tawang and SeLa pass were also surveyed. Among 5 localities, the Tawang area has the maximum diversity of lichens represented by 48 species followed by HSP 3 with 41 species and 28 species each in both HSP 2 and HSP 1. The SeLa Pass is represented by occurrence of 26 species only. Lichen family Parmeliaceae is the dominant in the study area, belonging to 51 species followed by Cladoniaceae and Lecanoraceae with 16 and 7 species, respectively. Any alteration in the substratum as well as growth forms of baseline lichen species in near future may help us to predict the habitat shift/composition of species in the area. The biomonitoring procedure could be further standardized and used as part of an environmental monitoring programme in near future.
ISSN:0369-8211
2250-1746
DOI:10.1007/s40011-016-0830-z