Semi-stable vector bundles on elliptic curves and the associative Yang-Baxter equation

In this paper we study unitary solutions of the associative Yang--Baxter equation (AYBE) with spectral parameters. We show that to each point \(\tau\) from the upper half-plane and an invertible \(n \times n\) matrix \(B\) with complex coefficients one can attach a solution of AYBE with values in \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-11
Hauptverfasser: Burban, Igor, Henrich, Thilo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Burban, Igor
Henrich, Thilo
description In this paper we study unitary solutions of the associative Yang--Baxter equation (AYBE) with spectral parameters. We show that to each point \(\tau\) from the upper half-plane and an invertible \(n \times n\) matrix \(B\) with complex coefficients one can attach a solution of AYBE with values in \(Mat_{n \times n}(\CC) \otimes Mat_{n \times n}(\CC)\), depending holomorphically on \(\tau\) and \(B\). Moreover, we compute some of these solutions explicitly.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087615723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087615723</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876157233</originalsourceid><addsrcrecordid>eNqNjssKwjAUBYMgWLT_cMF1oE3tY60o7hXBVUnTq6bEpM2j-Plm4Qe4Gpg5i7MgCSuKnDY7xlYkdW7IsoxVNSvLIiG3C74ldZ53CmFG4Y2FLuheoQOjAZWSo5cCRLBzVFz34F8I3DkjJPdyRrhz_aR7_vFoAacQpdEbsnxw5TD9cU22p-P1cKajNVNA59vBBKtjalnW1FVe1vHkf6svNCRBhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087615723</pqid></control><display><type>article</type><title>Semi-stable vector bundles on elliptic curves and the associative Yang-Baxter equation</title><source>Free E- Journals</source><creator>Burban, Igor ; Henrich, Thilo</creator><creatorcontrib>Burban, Igor ; Henrich, Thilo</creatorcontrib><description>In this paper we study unitary solutions of the associative Yang--Baxter equation (AYBE) with spectral parameters. We show that to each point \(\tau\) from the upper half-plane and an invertible \(n \times n\) matrix \(B\) with complex coefficients one can attach a solution of AYBE with values in \(Mat_{n \times n}(\CC) \otimes Mat_{n \times n}(\CC)\), depending holomorphically on \(\tau\) and \(B\). Moreover, we compute some of these solutions explicitly.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curves ; Servers</subject><ispartof>arXiv.org, 2010-11</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Burban, Igor</creatorcontrib><creatorcontrib>Henrich, Thilo</creatorcontrib><title>Semi-stable vector bundles on elliptic curves and the associative Yang-Baxter equation</title><title>arXiv.org</title><description>In this paper we study unitary solutions of the associative Yang--Baxter equation (AYBE) with spectral parameters. We show that to each point \(\tau\) from the upper half-plane and an invertible \(n \times n\) matrix \(B\) with complex coefficients one can attach a solution of AYBE with values in \(Mat_{n \times n}(\CC) \otimes Mat_{n \times n}(\CC)\), depending holomorphically on \(\tau\) and \(B\). Moreover, we compute some of these solutions explicitly.</description><subject>Curves</subject><subject>Servers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjssKwjAUBYMgWLT_cMF1oE3tY60o7hXBVUnTq6bEpM2j-Plm4Qe4Gpg5i7MgCSuKnDY7xlYkdW7IsoxVNSvLIiG3C74ldZ53CmFG4Y2FLuheoQOjAZWSo5cCRLBzVFz34F8I3DkjJPdyRrhz_aR7_vFoAacQpdEbsnxw5TD9cU22p-P1cKajNVNA59vBBKtjalnW1FVe1vHkf6svNCRBhQ</recordid><startdate>20101120</startdate><enddate>20101120</enddate><creator>Burban, Igor</creator><creator>Henrich, Thilo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101120</creationdate><title>Semi-stable vector bundles on elliptic curves and the associative Yang-Baxter equation</title><author>Burban, Igor ; Henrich, Thilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876157233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Curves</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Burban, Igor</creatorcontrib><creatorcontrib>Henrich, Thilo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burban, Igor</au><au>Henrich, Thilo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Semi-stable vector bundles on elliptic curves and the associative Yang-Baxter equation</atitle><jtitle>arXiv.org</jtitle><date>2010-11-20</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>In this paper we study unitary solutions of the associative Yang--Baxter equation (AYBE) with spectral parameters. We show that to each point \(\tau\) from the upper half-plane and an invertible \(n \times n\) matrix \(B\) with complex coefficients one can attach a solution of AYBE with values in \(Mat_{n \times n}(\CC) \otimes Mat_{n \times n}(\CC)\), depending holomorphically on \(\tau\) and \(B\). Moreover, we compute some of these solutions explicitly.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087615723
source Free E- Journals
subjects Curves
Servers
title Semi-stable vector bundles on elliptic curves and the associative Yang-Baxter equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Semi-stable%20vector%20bundles%20on%20elliptic%20curves%20and%20the%20associative%20Yang-Baxter%20equation&rft.jtitle=arXiv.org&rft.au=Burban,%20Igor&rft.date=2010-11-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087615723%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087615723&rft_id=info:pmid/&rfr_iscdi=true