Semi-stable vector bundles on elliptic curves and the associative Yang-Baxter equation
In this paper we study unitary solutions of the associative Yang--Baxter equation (AYBE) with spectral parameters. We show that to each point \(\tau\) from the upper half-plane and an invertible \(n \times n\) matrix \(B\) with complex coefficients one can attach a solution of AYBE with values in \(...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study unitary solutions of the associative Yang--Baxter equation (AYBE) with spectral parameters. We show that to each point \(\tau\) from the upper half-plane and an invertible \(n \times n\) matrix \(B\) with complex coefficients one can attach a solution of AYBE with values in \(Mat_{n \times n}(\CC) \otimes Mat_{n \times n}(\CC)\), depending holomorphically on \(\tau\) and \(B\). Moreover, we compute some of these solutions explicitly. |
---|---|
ISSN: | 2331-8422 |