Kazhdan-Lusztig basis for generic Specht modules

In this paper, we let \(\Hecke\) be the Hecke algebra associated with a finite Coxeter group \(W\) and with one-parameter, over the ring of scalars \(\Alg=\mathbb{Z}(q, q^{-1})\). With an elementary method, we introduce a cellular basis of \(\Hecke\) indexed by the sets \(E_J (J\subseteq S)\) and ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-12
1. Verfasser: Yin, Yunchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we let \(\Hecke\) be the Hecke algebra associated with a finite Coxeter group \(W\) and with one-parameter, over the ring of scalars \(\Alg=\mathbb{Z}(q, q^{-1})\). With an elementary method, we introduce a cellular basis of \(\Hecke\) indexed by the sets \(E_J (J\subseteq S)\) and obtain a general theory of "Specht modules". We provide an algorithm for \(W\!\)-graphs for the "generic Specht module", which associates with the Kazhdan and Lusztig cell ( or more generally, a union of cells of \(W\) ) containing the longest element of a parabolic subgroup \(W_J\) for appropriate \(J\subseteq S\). As an example of applications, we show a construction of \(W\!\)-graphs for the Hecke algebra of type \(A\).
ISSN:2331-8422