Property \((\beta)\) and uniform quotient maps

In 1999, Bates, Johnson, Lindenstrauss, Preiss and Schechtman asked whether a Banach space that is a uniform quotient of \(\ell_p\), \(1 < p \neq 2 < \infty\), must be isomorphic to a linear quotient of \(\ell_p\). We apply the geometric property \((\beta)\) of Rolewicz to the study of uniform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-10
Hauptverfasser: Lima, Vegard, Randrianarivony, N Lovasoa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1999, Bates, Johnson, Lindenstrauss, Preiss and Schechtman asked whether a Banach space that is a uniform quotient of \(\ell_p\), \(1 < p \neq 2 < \infty\), must be isomorphic to a linear quotient of \(\ell_p\). We apply the geometric property \((\beta)\) of Rolewicz to the study of uniform and Lipschitz quotient maps, and answer the above question positively for the case \(1
ISSN:2331-8422