Property \((\beta)\) and uniform quotient maps
In 1999, Bates, Johnson, Lindenstrauss, Preiss and Schechtman asked whether a Banach space that is a uniform quotient of \(\ell_p\), \(1 < p \neq 2 < \infty\), must be isomorphic to a linear quotient of \(\ell_p\). We apply the geometric property \((\beta)\) of Rolewicz to the study of uniform...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1999, Bates, Johnson, Lindenstrauss, Preiss and Schechtman asked whether a Banach space that is a uniform quotient of \(\ell_p\), \(1 < p \neq 2 < \infty\), must be isomorphic to a linear quotient of \(\ell_p\). We apply the geometric property \((\beta)\) of Rolewicz to the study of uniform and Lipschitz quotient maps, and answer the above question positively for the case \(1 |
---|---|
ISSN: | 2331-8422 |