Anti-lecture Hall Compositions and Overpartitions

We show that the number of anti-lecture hall compositions of n with the first entry not exceeding k-2 equals the number of overpartitions of n with non-overlined parts not congruent to \(0,\pm 1\) modulo k. This identity can be considered as a refined version of the anti-lecture hall theorem of Cort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-06
Hauptverfasser: Chen, William Y C, Sang, Doris D M, Shi, Diane Y H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the number of anti-lecture hall compositions of n with the first entry not exceeding k-2 equals the number of overpartitions of n with non-overlined parts not congruent to \(0,\pm 1\) modulo k. This identity can be considered as a refined version of the anti-lecture hall theorem of Corteel and Savage. To prove this result, we find two Rogers-Ramanujan type identities for overpartition which are analogous to the Rogers-Ramanjan type identities due to Andrews. When k is odd, we give an alternative proof by using a generalized Rogers-Ramanujan identity due to Andrews, a bijection of Corteel and Savage and a refined version of a bijection also due to Corteel and Savage.
ISSN:2331-8422