Scaling Limit for the Diffusion Exit Problem in the Levinson Case

The exit problem for small perturbations of a dynamical system in a domain is considered. It is assumed that the unperturbed dynamical system and the domain satisfy the Levinson conditions. We assume that the random perturbation affects the driving vector field and the initial condition, and each of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-06
Hauptverfasser: Sergio Angel Almada Monter, Bakhtin, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exit problem for small perturbations of a dynamical system in a domain is considered. It is assumed that the unperturbed dynamical system and the domain satisfy the Levinson conditions. We assume that the random perturbation affects the driving vector field and the initial condition, and each of the components of the perturbation follows a scaling limit. We derive the joint scaling limit for the random exit time and exit point. We use this result to study the asymptotics of the exit time for 1-d diffusions conditioned on rare events.
ISSN:2331-8422