Scaling Limit for the Diffusion Exit Problem in the Levinson Case
The exit problem for small perturbations of a dynamical system in a domain is considered. It is assumed that the unperturbed dynamical system and the domain satisfy the Levinson conditions. We assume that the random perturbation affects the driving vector field and the initial condition, and each of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The exit problem for small perturbations of a dynamical system in a domain is considered. It is assumed that the unperturbed dynamical system and the domain satisfy the Levinson conditions. We assume that the random perturbation affects the driving vector field and the initial condition, and each of the components of the perturbation follows a scaling limit. We derive the joint scaling limit for the random exit time and exit point. We use this result to study the asymptotics of the exit time for 1-d diffusions conditioned on rare events. |
---|---|
ISSN: | 2331-8422 |