The Szemeredi property in ergodic W-dynamical systems

We study weak mixing of all orders for asymptotically abelian weakly mixing state preserving C*-dynamical systems, where the dynamics is given by the action of an abelian second countable locally compact group which contains a Folner sequence satisfying the Tempelman condition. For a smaller class o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-08
Hauptverfasser: Beyers, Conrad, Duvenhage, Rocco, Stroh, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study weak mixing of all orders for asymptotically abelian weakly mixing state preserving C*-dynamical systems, where the dynamics is given by the action of an abelian second countable locally compact group which contains a Folner sequence satisfying the Tempelman condition. For a smaller class of groups (which include Z^q and R^q) this is then used to show that an asymptotically abelian ergodic W*-dynamical system either has the "Szemeredi property" or contains a nontrivial subsystem (a "compact factor") that does. A van der Corput lemma for Hilbert space valued functions on the group is one of our main technical tools.
ISSN:2331-8422