Characterization of geodesic flows on T^2 with and without positive topological entropy

In the present work we consider the behavior of the geodesic flow on the unit tangent bundle of the 2-torus \(T^2\) for an arbitrary Riemannian metric. A natural non-negative quantity which measures the complexity of the geodesic flow is the topological entropy. In particular, positive topological e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-06
Hauptverfasser: Glasmachers, Eva, Knieper, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work we consider the behavior of the geodesic flow on the unit tangent bundle of the 2-torus \(T^2\) for an arbitrary Riemannian metric. A natural non-negative quantity which measures the complexity of the geodesic flow is the topological entropy. In particular, positive topological entropy implies chaotic behavior on an invariant set in the phase space of positive Hausdorff-dimension (horseshoe). We show that in the case of zero topological entropy the flow has properties similar to integrable systems. In particular there exists a non-trivial continuous constant of motion which measures the direction of geodesics lifted onto the universal covering \(\Br^2\). Furthermore, those geodesics travel in strips bounded by Euclidean lines. Moreover we derive necessary and sufficient conditions for vanishing topological entropy involving intersection properties of single geodesics on \(T^2\).
ISSN:2331-8422