Cooperative Algorithms for MIMO Interference Channels

Interference alignment is a transmission technique for exploiting all available degrees of freedom in the interference channel with an arbitrary number of users. Most prior work on interference alignment, however, neglects interference from other nodes in the network not participating in the alignme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-10
Hauptverfasser: Peters, Steven W, Heath, Robert W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interference alignment is a transmission technique for exploiting all available degrees of freedom in the interference channel with an arbitrary number of users. Most prior work on interference alignment, however, neglects interference from other nodes in the network not participating in the alignment operation. This paper proposes three generalizations of interference alignment for the multiple-antenna interference channel with multiple users that account for colored noise, which models uncoordinated interference. First, a minimum interference-plus-noise leakage algorithm is presented, and shown to be equivalent to previous subspace methods when noise is spatially white or negligible. A joint minimum mean squared error design is then proposed that jointly optimizes the transmit precoders and receive spatial filters, whereas previous designs neglect the receive spatial filter. This algorithm is shown to be a generalization of previous joint MMSE designs for other system configurations such as the broadcast channel. Finally, a maximum signal-to-interference-plus-noise ratio algorithm is developed that is proven to converge, unlike previous maximum SINR algorithms. The latter two designs are shown to have increased complexity due to non-orthogonal precoders, more required iterations, or more channel state knowledge than the min INL or subspace methods. The sum throughput performance of these algorithms is simulated in the context of a network with uncoordinated co-channel interferers not participating in the alignment protocol. It is found that a network with cochannel interference can benefit from employing precoders designed to consider that interference, but in some cases, ignoring the co-channel interference is advantageous.
ISSN:2331-8422