An Asymptotic Version of the Multigraph 1-Factorization Conjecture
We give a self-contained proof that for all positive integers \(r\) and all \(\epsilon > 0\), there is an integer \(N = N(r, \epsilon)\) such that for all \(n \ge N\) any regular multigraph of order \(2n\) with multiplicity at most \(r\) and degree at least \((1+\epsilon)rn\) is 1-factorizable. T...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a self-contained proof that for all positive integers \(r\) and all \(\epsilon > 0\), there is an integer \(N = N(r, \epsilon)\) such that for all \(n \ge N\) any regular multigraph of order \(2n\) with multiplicity at most \(r\) and degree at least \((1+\epsilon)rn\) is 1-factorizable. This generalizes results of Perkovi{ć} and Reed, and Plantholt and Tipnis. |
---|---|
ISSN: | 2331-8422 |