Numerical solution of Richards’ equation of water flow by generalized finite differences
Richards equation is a degenerate elliptic parabolic nonlinear expression which models flow in unsaturated porous media. Due to its importance in engineering, a number of linearization schemes for approximating its solution have been proposed. Among the more efficient are combinations of Newtonian i...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2018-09, Vol.101, p.168-175 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Richards equation is a degenerate elliptic parabolic nonlinear expression which models flow in unsaturated porous media. Due to its importance in engineering, a number of linearization schemes for approximating its solution have been proposed. Among the more efficient are combinations of Newtonian iterations for the spatial discretization using finite elements, and an implicit θ-method for the time integration. However, when the finite element formulation is used, numerical oscillations near the infiltration front are presented. To overcome this problem, this paper presents a novel generalized finite differences scheme and an adaptive step size Crank-Nicolson method, which can be applied for solving Richards’ equation on nonrectangular structured grids. The proposed method is tested on an illustrative numerical example on a road embankment and the results are compared with a finite element method solution. |
---|---|
ISSN: | 0266-352X 1873-7633 |
DOI: | 10.1016/j.compgeo.2018.05.003 |