An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-06, Vol.363, p.268-301
Hauptverfasser: Del Pino, S., Labourasse, E., Morel, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue
container_start_page 268
container_title Journal of computational physics
container_volume 363
creator Del Pino, S.
Labourasse, E.
Morel, G.
description We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme. •Compressible gas dynamics.•Multidimensional bi-fluid model.•Multidimensional Asymptotic preserving scheme.•Indirect ALE approach (each fluid is associated to its own mesh).
doi_str_mv 10.1016/j.jcp.2018.02.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2087381482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118300986</els_id><sourcerecordid>2087381482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-186b4a83b0eb7e29a81df1b1dacc99fba66302683254a3adacafbb0a93fbda273</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA866TbN1m8VSkfkDBi55Dkp1olt3NmqQt_fem1LOngYd5XmZeQm4ZlAxYfd-VnZlKDkyUwMtMzsiMQQMFX7L6nMwAOCuapmGX5CrGDgDEw0LMyM9qpCoehin55AydAkYMOzd-0WHbJ9e6Acfo_Kh6utqs6YDp27fU-kAVjYeYcKDe0rT31PjhaEene6S29_uY0XbqsaV7l76pDc6knHRNLqzqI978zTn5fF5_PL0Wm_eXt6fVpjBVLVLBRK0XSlQaUC-RN0qw1jLNWmVM01it6roCXouKPyxUpTJWVmtQTWV1q_iympO7U-4U_M8WY5Kd34b8SJQcxLISbCF43mKnLRN8jAGtnIIbVDhIBvLYrOxkblYem5XAZSbZeTw5mM_fOQwyGoejwdYFNEm23v1j_wKFwIQb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087381482</pqid></control><display><type>article</type><title>An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Del Pino, S. ; Labourasse, E. ; Morel, G.</creator><creatorcontrib>Del Pino, S. ; Labourasse, E. ; Morel, G.</creatorcontrib><description>We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme. •Compressible gas dynamics.•Multidimensional bi-fluid model.•Multidimensional Asymptotic preserving scheme.•Indirect ALE approach (each fluid is associated to its own mesh).</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.02.016</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Arbitrary-Lagrangian–Eulerian (ALE) ; Asymptotic methods ; Asymptotic preserving ; Asymptotic properties ; Compressibility ; Compressible gas dynamics ; Computational fluid dynamics ; Computational physics ; Finite element analysis ; Finite volume method ; Finite volumes ; Fluid mechanics ; Friction ; Gases ; Multi-fluid ; Unstructured meshes</subject><ispartof>Journal of computational physics, 2018-06, Vol.363, p.268-301</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-186b4a83b0eb7e29a81df1b1dacc99fba66302683254a3adacafbb0a93fbda273</citedby><cites>FETCH-LOGICAL-c368t-186b4a83b0eb7e29a81df1b1dacc99fba66302683254a3adacafbb0a93fbda273</cites><orcidid>0000-0002-9889-6970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2018.02.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Del Pino, S.</creatorcontrib><creatorcontrib>Labourasse, E.</creatorcontrib><creatorcontrib>Morel, G.</creatorcontrib><title>An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction</title><title>Journal of computational physics</title><description>We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme. •Compressible gas dynamics.•Multidimensional bi-fluid model.•Multidimensional Asymptotic preserving scheme.•Indirect ALE approach (each fluid is associated to its own mesh).</description><subject>Arbitrary-Lagrangian–Eulerian (ALE)</subject><subject>Asymptotic methods</subject><subject>Asymptotic preserving</subject><subject>Asymptotic properties</subject><subject>Compressibility</subject><subject>Compressible gas dynamics</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Finite element analysis</subject><subject>Finite volume method</subject><subject>Finite volumes</subject><subject>Fluid mechanics</subject><subject>Friction</subject><subject>Gases</subject><subject>Multi-fluid</subject><subject>Unstructured meshes</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA866TbN1m8VSkfkDBi55Dkp1olt3NmqQt_fem1LOngYd5XmZeQm4ZlAxYfd-VnZlKDkyUwMtMzsiMQQMFX7L6nMwAOCuapmGX5CrGDgDEw0LMyM9qpCoehin55AydAkYMOzd-0WHbJ9e6Acfo_Kh6utqs6YDp27fU-kAVjYeYcKDe0rT31PjhaEene6S29_uY0XbqsaV7l76pDc6knHRNLqzqI978zTn5fF5_PL0Wm_eXt6fVpjBVLVLBRK0XSlQaUC-RN0qw1jLNWmVM01it6roCXouKPyxUpTJWVmtQTWV1q_iympO7U-4U_M8WY5Kd34b8SJQcxLISbCF43mKnLRN8jAGtnIIbVDhIBvLYrOxkblYem5XAZSbZeTw5mM_fOQwyGoejwdYFNEm23v1j_wKFwIQb</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Del Pino, S.</creator><creator>Labourasse, E.</creator><creator>Morel, G.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9889-6970</orcidid></search><sort><creationdate>20180615</creationdate><title>An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction</title><author>Del Pino, S. ; Labourasse, E. ; Morel, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-186b4a83b0eb7e29a81df1b1dacc99fba66302683254a3adacafbb0a93fbda273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arbitrary-Lagrangian–Eulerian (ALE)</topic><topic>Asymptotic methods</topic><topic>Asymptotic preserving</topic><topic>Asymptotic properties</topic><topic>Compressibility</topic><topic>Compressible gas dynamics</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Finite element analysis</topic><topic>Finite volume method</topic><topic>Finite volumes</topic><topic>Fluid mechanics</topic><topic>Friction</topic><topic>Gases</topic><topic>Multi-fluid</topic><topic>Unstructured meshes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Pino, S.</creatorcontrib><creatorcontrib>Labourasse, E.</creatorcontrib><creatorcontrib>Morel, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Pino, S.</au><au>Labourasse, E.</au><au>Morel, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction</atitle><jtitle>Journal of computational physics</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>363</volume><spage>268</spage><epage>301</epage><pages>268-301</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme. •Compressible gas dynamics.•Multidimensional bi-fluid model.•Multidimensional Asymptotic preserving scheme.•Indirect ALE approach (each fluid is associated to its own mesh).</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.02.016</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-9889-6970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2018-06, Vol.363, p.268-301
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2087381482
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Arbitrary-Lagrangian–Eulerian (ALE)
Asymptotic methods
Asymptotic preserving
Asymptotic properties
Compressibility
Compressible gas dynamics
Computational fluid dynamics
Computational physics
Finite element analysis
Finite volume method
Finite volumes
Fluid mechanics
Friction
Gases
Multi-fluid
Unstructured meshes
title An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20preserving%20multidimensional%20ALE%20method%20for%20a%20system%20of%20two%20compressible%20flows%20coupled%20with%20friction&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Del%20Pino,%20S.&rft.date=2018-06-15&rft.volume=363&rft.spage=268&rft.epage=301&rft.pages=268-301&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.02.016&rft_dat=%3Cproquest_cross%3E2087381482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087381482&rft_id=info:pmid/&rft_els_id=S0021999118300986&rfr_iscdi=true