An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-06, Vol.363, p.268-301
Hauptverfasser: Del Pino, S., Labourasse, E., Morel, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme. •Compressible gas dynamics.•Multidimensional bi-fluid model.•Multidimensional Asymptotic preserving scheme.•Indirect ALE approach (each fluid is associated to its own mesh).
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2018.02.016