Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage

An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2018-07, Vol.155, p.620-629
Hauptverfasser: Zheng, Yingying, Jenkins, Bryan M., Kornbluth, Kurt, Kendall, Alissa, Træholt, Chresten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 629
container_issue
container_start_page 620
container_title Energy (Oxford)
container_volume 155
creator Zheng, Yingying
Jenkins, Bryan M.
Kornbluth, Kurt
Kendall, Alissa
Træholt, Chresten
description An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy storage. A case study was examined for a conceptual utility grid-connected BCHP application in Davis, California under different scenarios. The results show that a 100 kW biomass gasifier and engine combination with energy storage was the most cost effective design based on the assumed energy load profile, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates. •A model was developed to optimize the design of a biomass-fueled combined heat and power with energy storage.•Receding horizon optimization was applied to dispatch of the BCHP components to achieve minimum cost.•The model application provides a means to determine optimal BCHP configuration with varying demands and utility tariff rates.
doi_str_mv 10.1016/j.energy.2018.05.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2087380591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218308569</els_id><sourcerecordid>2087380591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-dff26e0b0b997de56b86d4209d5c95dd1b8e131a59276d26b828a729f7fa30253</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEuPjH3CIxLnFSZu2uSAhxJc0aRc4R2njdpm2piQZaP-ejHLmZMv2-9p-CLlhkDNg1d0mxxH9cMg5sCYHkUNRnZAFa-oiq-pGnJJFqkAmypKfk4sQNgAgGikXxK2maHd6Sw0GO4xUj4a6Cb2OdhxoiCnBwWKgvfNU09a6nQ4h6_e4RUM7t2vtmJI16virndw3ehoOIeKOftu4pvNpycp5PeAVOev1NuD1X7wkH89P74-v2XL18vb4sMy6ktUxM33PK4QWWilrg6Jqm8qUHKQRnRTGsLZBVjAtJK8rw1ObN7rmsq97XQAXxSW5nX0n7z73GKLauL0f00rFIXFpQEiWpsp5qvMuBI-9mnyi4Q-KgTqiVRs136-OaBUIlUAm2f0sw_TBl0WvQmdx7NBYj11Uxtn_DX4AlJ-FsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087380591</pqid></control><display><type>article</type><title>Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Zheng, Yingying ; Jenkins, Bryan M. ; Kornbluth, Kurt ; Kendall, Alissa ; Træholt, Chresten</creator><creatorcontrib>Zheng, Yingying ; Jenkins, Bryan M. ; Kornbluth, Kurt ; Kendall, Alissa ; Træholt, Chresten</creatorcontrib><description>An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy storage. A case study was examined for a conceptual utility grid-connected BCHP application in Davis, California under different scenarios. The results show that a 100 kW biomass gasifier and engine combination with energy storage was the most cost effective design based on the assumed energy load profile, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates. •A model was developed to optimize the design of a biomass-fueled combined heat and power with energy storage.•Receding horizon optimization was applied to dispatch of the BCHP components to achieve minimum cost.•The model application provides a means to determine optimal BCHP configuration with varying demands and utility tariff rates.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.05.036</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biomass ; Biomass burning ; Biomass energy production ; Boilers ; Case studies ; Cogeneration ; Combined heat and power ; Economic conditions ; Economic models ; Energy management ; Energy modeling ; Energy storage ; Gas storage ; Gasification ; Heat ; Heat recovery ; Internal combustion engines ; Optimization ; Producer gas ; Sensitivity analysis ; Sliding time window ; Tariffs ; Thermal energy ; Windows (intervals)</subject><ispartof>Energy (Oxford), 2018-07, Vol.155, p.620-629</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-dff26e0b0b997de56b86d4209d5c95dd1b8e131a59276d26b828a729f7fa30253</citedby><cites>FETCH-LOGICAL-c417t-dff26e0b0b997de56b86d4209d5c95dd1b8e131a59276d26b828a729f7fa30253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.05.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Zheng, Yingying</creatorcontrib><creatorcontrib>Jenkins, Bryan M.</creatorcontrib><creatorcontrib>Kornbluth, Kurt</creatorcontrib><creatorcontrib>Kendall, Alissa</creatorcontrib><creatorcontrib>Træholt, Chresten</creatorcontrib><title>Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage</title><title>Energy (Oxford)</title><description>An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy storage. A case study was examined for a conceptual utility grid-connected BCHP application in Davis, California under different scenarios. The results show that a 100 kW biomass gasifier and engine combination with energy storage was the most cost effective design based on the assumed energy load profile, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates. •A model was developed to optimize the design of a biomass-fueled combined heat and power with energy storage.•Receding horizon optimization was applied to dispatch of the BCHP components to achieve minimum cost.•The model application provides a means to determine optimal BCHP configuration with varying demands and utility tariff rates.</description><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biomass energy production</subject><subject>Boilers</subject><subject>Case studies</subject><subject>Cogeneration</subject><subject>Combined heat and power</subject><subject>Economic conditions</subject><subject>Economic models</subject><subject>Energy management</subject><subject>Energy modeling</subject><subject>Energy storage</subject><subject>Gas storage</subject><subject>Gasification</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Internal combustion engines</subject><subject>Optimization</subject><subject>Producer gas</subject><subject>Sensitivity analysis</subject><subject>Sliding time window</subject><subject>Tariffs</subject><subject>Thermal energy</subject><subject>Windows (intervals)</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEuPjH3CIxLnFSZu2uSAhxJc0aRc4R2njdpm2piQZaP-ejHLmZMv2-9p-CLlhkDNg1d0mxxH9cMg5sCYHkUNRnZAFa-oiq-pGnJJFqkAmypKfk4sQNgAgGikXxK2maHd6Sw0GO4xUj4a6Cb2OdhxoiCnBwWKgvfNU09a6nQ4h6_e4RUM7t2vtmJI16virndw3ehoOIeKOftu4pvNpycp5PeAVOev1NuD1X7wkH89P74-v2XL18vb4sMy6ktUxM33PK4QWWilrg6Jqm8qUHKQRnRTGsLZBVjAtJK8rw1ObN7rmsq97XQAXxSW5nX0n7z73GKLauL0f00rFIXFpQEiWpsp5qvMuBI-9mnyi4Q-KgTqiVRs136-OaBUIlUAm2f0sw_TBl0WvQmdx7NBYj11Uxtn_DX4AlJ-FsA</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Zheng, Yingying</creator><creator>Jenkins, Bryan M.</creator><creator>Kornbluth, Kurt</creator><creator>Kendall, Alissa</creator><creator>Træholt, Chresten</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180715</creationdate><title>Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage</title><author>Zheng, Yingying ; Jenkins, Bryan M. ; Kornbluth, Kurt ; Kendall, Alissa ; Træholt, Chresten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-dff26e0b0b997de56b86d4209d5c95dd1b8e131a59276d26b828a729f7fa30253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biomass energy production</topic><topic>Boilers</topic><topic>Case studies</topic><topic>Cogeneration</topic><topic>Combined heat and power</topic><topic>Economic conditions</topic><topic>Economic models</topic><topic>Energy management</topic><topic>Energy modeling</topic><topic>Energy storage</topic><topic>Gas storage</topic><topic>Gasification</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Internal combustion engines</topic><topic>Optimization</topic><topic>Producer gas</topic><topic>Sensitivity analysis</topic><topic>Sliding time window</topic><topic>Tariffs</topic><topic>Thermal energy</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yingying</creatorcontrib><creatorcontrib>Jenkins, Bryan M.</creatorcontrib><creatorcontrib>Kornbluth, Kurt</creatorcontrib><creatorcontrib>Kendall, Alissa</creatorcontrib><creatorcontrib>Træholt, Chresten</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yingying</au><au>Jenkins, Bryan M.</au><au>Kornbluth, Kurt</au><au>Kendall, Alissa</au><au>Træholt, Chresten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>155</volume><spage>620</spage><epage>629</epage><pages>620-629</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy storage. A case study was examined for a conceptual utility grid-connected BCHP application in Davis, California under different scenarios. The results show that a 100 kW biomass gasifier and engine combination with energy storage was the most cost effective design based on the assumed energy load profile, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates. •A model was developed to optimize the design of a biomass-fueled combined heat and power with energy storage.•Receding horizon optimization was applied to dispatch of the BCHP components to achieve minimum cost.•The model application provides a means to determine optimal BCHP configuration with varying demands and utility tariff rates.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.05.036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2018-07, Vol.155, p.620-629
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2087380591
source Elsevier ScienceDirect Journals
subjects Biomass
Biomass burning
Biomass energy production
Boilers
Case studies
Cogeneration
Combined heat and power
Economic conditions
Economic models
Energy management
Energy modeling
Energy storage
Gas storage
Gasification
Heat
Heat recovery
Internal combustion engines
Optimization
Producer gas
Sensitivity analysis
Sliding time window
Tariffs
Thermal energy
Windows (intervals)
title Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20and%20operating%20strategies%20for%20a%20biomass-fueled%20combined%20heat%20and%20power%20system%20with%20energy%20storage&rft.jtitle=Energy%20(Oxford)&rft.au=Zheng,%20Yingying&rft.date=2018-07-15&rft.volume=155&rft.spage=620&rft.epage=629&rft.pages=620-629&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.05.036&rft_dat=%3Cproquest_cross%3E2087380591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087380591&rft_id=info:pmid/&rft_els_id=S0360544218308569&rfr_iscdi=true