Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage
An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy st...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2018-07, Vol.155, p.620-629 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 629 |
---|---|
container_issue | |
container_start_page | 620 |
container_title | Energy (Oxford) |
container_volume | 155 |
creator | Zheng, Yingying Jenkins, Bryan M. Kornbluth, Kurt Kendall, Alissa Træholt, Chresten |
description | An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy storage. A case study was examined for a conceptual utility grid-connected BCHP application in Davis, California under different scenarios. The results show that a 100 kW biomass gasifier and engine combination with energy storage was the most cost effective design based on the assumed energy load profile, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates.
•A model was developed to optimize the design of a biomass-fueled combined heat and power with energy storage.•Receding horizon optimization was applied to dispatch of the BCHP components to achieve minimum cost.•The model application provides a means to determine optimal BCHP configuration with varying demands and utility tariff rates. |
doi_str_mv | 10.1016/j.energy.2018.05.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2087380591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218308569</els_id><sourcerecordid>2087380591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-dff26e0b0b997de56b86d4209d5c95dd1b8e131a59276d26b828a729f7fa30253</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEuPjH3CIxLnFSZu2uSAhxJc0aRc4R2njdpm2piQZaP-ejHLmZMv2-9p-CLlhkDNg1d0mxxH9cMg5sCYHkUNRnZAFa-oiq-pGnJJFqkAmypKfk4sQNgAgGikXxK2maHd6Sw0GO4xUj4a6Cb2OdhxoiCnBwWKgvfNU09a6nQ4h6_e4RUM7t2vtmJI16virndw3ehoOIeKOftu4pvNpycp5PeAVOev1NuD1X7wkH89P74-v2XL18vb4sMy6ktUxM33PK4QWWilrg6Jqm8qUHKQRnRTGsLZBVjAtJK8rw1ObN7rmsq97XQAXxSW5nX0n7z73GKLauL0f00rFIXFpQEiWpsp5qvMuBI-9mnyi4Q-KgTqiVRs136-OaBUIlUAm2f0sw_TBl0WvQmdx7NBYj11Uxtn_DX4AlJ-FsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087380591</pqid></control><display><type>article</type><title>Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Zheng, Yingying ; Jenkins, Bryan M. ; Kornbluth, Kurt ; Kendall, Alissa ; Træholt, Chresten</creator><creatorcontrib>Zheng, Yingying ; Jenkins, Bryan M. ; Kornbluth, Kurt ; Kendall, Alissa ; Træholt, Chresten</creatorcontrib><description>An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy storage. A case study was examined for a conceptual utility grid-connected BCHP application in Davis, California under different scenarios. The results show that a 100 kW biomass gasifier and engine combination with energy storage was the most cost effective design based on the assumed energy load profile, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates.
•A model was developed to optimize the design of a biomass-fueled combined heat and power with energy storage.•Receding horizon optimization was applied to dispatch of the BCHP components to achieve minimum cost.•The model application provides a means to determine optimal BCHP configuration with varying demands and utility tariff rates.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.05.036</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biomass ; Biomass burning ; Biomass energy production ; Boilers ; Case studies ; Cogeneration ; Combined heat and power ; Economic conditions ; Economic models ; Energy management ; Energy modeling ; Energy storage ; Gas storage ; Gasification ; Heat ; Heat recovery ; Internal combustion engines ; Optimization ; Producer gas ; Sensitivity analysis ; Sliding time window ; Tariffs ; Thermal energy ; Windows (intervals)</subject><ispartof>Energy (Oxford), 2018-07, Vol.155, p.620-629</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-dff26e0b0b997de56b86d4209d5c95dd1b8e131a59276d26b828a729f7fa30253</citedby><cites>FETCH-LOGICAL-c417t-dff26e0b0b997de56b86d4209d5c95dd1b8e131a59276d26b828a729f7fa30253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.05.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Zheng, Yingying</creatorcontrib><creatorcontrib>Jenkins, Bryan M.</creatorcontrib><creatorcontrib>Kornbluth, Kurt</creatorcontrib><creatorcontrib>Kendall, Alissa</creatorcontrib><creatorcontrib>Træholt, Chresten</creatorcontrib><title>Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage</title><title>Energy (Oxford)</title><description>An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy storage. A case study was examined for a conceptual utility grid-connected BCHP application in Davis, California under different scenarios. The results show that a 100 kW biomass gasifier and engine combination with energy storage was the most cost effective design based on the assumed energy load profile, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates.
•A model was developed to optimize the design of a biomass-fueled combined heat and power with energy storage.•Receding horizon optimization was applied to dispatch of the BCHP components to achieve minimum cost.•The model application provides a means to determine optimal BCHP configuration with varying demands and utility tariff rates.</description><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biomass energy production</subject><subject>Boilers</subject><subject>Case studies</subject><subject>Cogeneration</subject><subject>Combined heat and power</subject><subject>Economic conditions</subject><subject>Economic models</subject><subject>Energy management</subject><subject>Energy modeling</subject><subject>Energy storage</subject><subject>Gas storage</subject><subject>Gasification</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Internal combustion engines</subject><subject>Optimization</subject><subject>Producer gas</subject><subject>Sensitivity analysis</subject><subject>Sliding time window</subject><subject>Tariffs</subject><subject>Thermal energy</subject><subject>Windows (intervals)</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEuPjH3CIxLnFSZu2uSAhxJc0aRc4R2njdpm2piQZaP-ejHLmZMv2-9p-CLlhkDNg1d0mxxH9cMg5sCYHkUNRnZAFa-oiq-pGnJJFqkAmypKfk4sQNgAgGikXxK2maHd6Sw0GO4xUj4a6Cb2OdhxoiCnBwWKgvfNU09a6nQ4h6_e4RUM7t2vtmJI16virndw3ehoOIeKOftu4pvNpycp5PeAVOev1NuD1X7wkH89P74-v2XL18vb4sMy6ktUxM33PK4QWWilrg6Jqm8qUHKQRnRTGsLZBVjAtJK8rw1ObN7rmsq97XQAXxSW5nX0n7z73GKLauL0f00rFIXFpQEiWpsp5qvMuBI-9mnyi4Q-KgTqiVRs136-OaBUIlUAm2f0sw_TBl0WvQmdx7NBYj11Uxtn_DX4AlJ-FsA</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Zheng, Yingying</creator><creator>Jenkins, Bryan M.</creator><creator>Kornbluth, Kurt</creator><creator>Kendall, Alissa</creator><creator>Træholt, Chresten</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180715</creationdate><title>Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage</title><author>Zheng, Yingying ; Jenkins, Bryan M. ; Kornbluth, Kurt ; Kendall, Alissa ; Træholt, Chresten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-dff26e0b0b997de56b86d4209d5c95dd1b8e131a59276d26b828a729f7fa30253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biomass energy production</topic><topic>Boilers</topic><topic>Case studies</topic><topic>Cogeneration</topic><topic>Combined heat and power</topic><topic>Economic conditions</topic><topic>Economic models</topic><topic>Energy management</topic><topic>Energy modeling</topic><topic>Energy storage</topic><topic>Gas storage</topic><topic>Gasification</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Internal combustion engines</topic><topic>Optimization</topic><topic>Producer gas</topic><topic>Sensitivity analysis</topic><topic>Sliding time window</topic><topic>Tariffs</topic><topic>Thermal energy</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yingying</creatorcontrib><creatorcontrib>Jenkins, Bryan M.</creatorcontrib><creatorcontrib>Kornbluth, Kurt</creatorcontrib><creatorcontrib>Kendall, Alissa</creatorcontrib><creatorcontrib>Træholt, Chresten</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yingying</au><au>Jenkins, Bryan M.</au><au>Kornbluth, Kurt</au><au>Kendall, Alissa</au><au>Træholt, Chresten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>155</volume><spage>620</spage><epage>629</epage><pages>620-629</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy storage. A case study was examined for a conceptual utility grid-connected BCHP application in Davis, California under different scenarios. The results show that a 100 kW biomass gasifier and engine combination with energy storage was the most cost effective design based on the assumed energy load profile, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates.
•A model was developed to optimize the design of a biomass-fueled combined heat and power with energy storage.•Receding horizon optimization was applied to dispatch of the BCHP components to achieve minimum cost.•The model application provides a means to determine optimal BCHP configuration with varying demands and utility tariff rates.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.05.036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2018-07, Vol.155, p.620-629 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2087380591 |
source | Elsevier ScienceDirect Journals |
subjects | Biomass Biomass burning Biomass energy production Boilers Case studies Cogeneration Combined heat and power Economic conditions Economic models Energy management Energy modeling Energy storage Gas storage Gasification Heat Heat recovery Internal combustion engines Optimization Producer gas Sensitivity analysis Sliding time window Tariffs Thermal energy Windows (intervals) |
title | Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20and%20operating%20strategies%20for%20a%20biomass-fueled%20combined%20heat%20and%20power%20system%20with%20energy%20storage&rft.jtitle=Energy%20(Oxford)&rft.au=Zheng,%20Yingying&rft.date=2018-07-15&rft.volume=155&rft.spage=620&rft.epage=629&rft.pages=620-629&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.05.036&rft_dat=%3Cproquest_cross%3E2087380591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087380591&rft_id=info:pmid/&rft_els_id=S0360544218308569&rfr_iscdi=true |