Glycosylation-enhanced biocompatibility of the supramolecular hydrogel of an anti-inflammatory drug for topical suppression of inflammation
[Display omitted] Intravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but it displays a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We report here an intravitreally injectable thermosensitive glycosyl...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2018-06, Vol.73, p.275-284 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Intravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but it displays a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We report here an intravitreally injectable thermosensitive glycosylated TA (TA-SA-Glu) hydrogel, formed by covalently conjugating glucosamine (Glu) with succinate TA (TA-SA), for treating uveitis. The TA-SA-Glu hydrogelator forms a supramolecular hydrogel spontaneously in aqueous solution with a minimal gelation concentration of 0.25 wt%. Structural analysis revealed that hydrogen bonds assisted by hydrophobic interaction resulted in self-assembled nanofibers. Rheology analysis demonstrated that this TA-SA-Glu hydrogel exhibited a typical thixotropic property. Sustained release of both TA-SA-Glu and TA from the hydrogel occurred throughout the 3-day in vitro release study. The obtained TA-SA-Glu hardly caused cytotoxicity against ARPE-19 and RAW264.7 cells after 24 h of incubation at drug concentration up to 600 μM. In particular, TA-SA-Glu exhibited a comparable anti-inflammatory efficacy to TA in terms of inhibiting the production of nitric oxide, tumor necrosis factor-α, and interleukin-6 in activated RAW264.7 macrophages. Following a single intravitreal injection, 69 nmol TA-SA-Glu hydrogel caused minimal apparent retinal toxicity, whereas the TA suspension displayed significant effects in terms of localized retinal toxicity. A single intravitreal injection of TA-SA-Glu hydrogel was more effective in controlling inflammatory response than that of the TA suspension treatment, particularly in down-regulating the pro-inflammatory Th1 and Th17 effector responses for treating experimental autoimmune uveitis. This study strongly indicates that supramolecular TA-SA-Glu hydrogels may represent a new option for posterior uveitis management.
Intravitreal/periocular injection of triamcinolone acetonide (TA) suspension is a common uveitis treatment, but suffers a high risk for serious side effects (e.g., high intraocular pressure, retinal toxicity). We generated an injectable glycosylated triamcinolone acetonide hydrogelator (TA-SA-Glu) hydrogel for treating uveitis. Following a single intravitreal injection, the proposed TA-SA-Glu hydrogel hardly caused apparent retinal toxicity at a dosage of 69 nmol per eye. Furthermore, TA-SA-Glu hydrogel was more effective in controlling non-infectious uveitis over than a TA suspension, particular |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2018.04.019 |