An Improvement to a Berezin-Li-Yau type inequality for the Klein-Gordon Operator
In this article we improve a lower bound for \(\sum_{j=1}^k\beta_j\) (a Berezin-Li-Yau type inequality) in [E. M. Harrell II and S. Yildirim Yolcu, Eigenvalue inequalities for Klein-Gordon Operators, J. Funct. Analysis, 256(12) (2009) 3977-3995]. Here \(\beta_j\) denotes the \(j\)th eigenvalue of th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we improve a lower bound for \(\sum_{j=1}^k\beta_j\) (a Berezin-Li-Yau type inequality) in [E. M. Harrell II and S. Yildirim Yolcu, Eigenvalue inequalities for Klein-Gordon Operators, J. Funct. Analysis, 256(12) (2009) 3977-3995]. Here \(\beta_j\) denotes the \(j\)th eigenvalue of the Klein Gordon Hamiltonian \(H_{0,\Omega}=|p|\) when restricted to a bounded set \(\Omega\subset {\mathbb R}^n\). \(H_{0,\Omega}\) can also be described as the generator of the Cauchy stochastic process with a killing condition on \(\partial \Omega\). (cf. [R. Banuelos, T. Kulczycki, Eigenvalue gaps for the Cauchy process and a Poincare inequality, J. Funct. Anal. 211 (2) (2004) 355-423]; [R. Banuelos, T. Kulczycki, The Cauchy process and the Steklov problem, J. Funct. Anal. 234 (2006) 199-225].) To do this, we adapt the proof of Melas ([ A. D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proceedings of the American Mathematical Society, 131(2) (2002) 631-636]), who improved the estimate for the bound of \(\sum_{j=1}^k\lambda_j\), where \(\lambda_j\) denotes the \(j\)th eigenvalue of the Dirichlet Laplacian on a bounded domain in \({\mathbb R}^d\). |
---|---|
ISSN: | 2331-8422 |