Conformal nets and local field theory

We describe a coordinate-free notion of conformal nets as a mathematical model of conformal field theory. We define defects between conformal nets and introduce composition of defects, thereby providing a notion of morphism between conformal field theories. Altogether we characterize the algebraic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-10
Hauptverfasser: Bartels, Arthur, Douglas, Christopher L, Henriques, André G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a coordinate-free notion of conformal nets as a mathematical model of conformal field theory. We define defects between conformal nets and introduce composition of defects, thereby providing a notion of morphism between conformal field theories. Altogether we characterize the algebraic structure of the collection of conformal nets as a symmetric monoidal tricategory. Dualizable objects of this tricategory correspond to conformal-net-valued 3-dimensional local topological quantum field theories. We prove that the dualizable conformal nets are the finite sums of irreducible nets with finite \mu-index. This classification provides a variety of 3-dimensional local field theories, including local field theories associated to central extensions of the loop groups of the special unitary groups.
ISSN:2331-8422