Phantom depth and flat base change
We prove that if \(f: (R,\m) \to (S,\n)\) is a flat local homomorphism, \(S/\m S\) is Cohen-Macaulay and \(F\)-injective, and \(R\) and \(S\) share a weak test element, then a tight closure analogue of the (standard) formula for depth and regular sequences across flat base change holds. As a corolla...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if \(f: (R,\m) \to (S,\n)\) is a flat local homomorphism, \(S/\m S\) is Cohen-Macaulay and \(F\)-injective, and \(R\) and \(S\) share a weak test element, then a tight closure analogue of the (standard) formula for depth and regular sequences across flat base change holds. As a corollary, it follows that phantom depth commutes with completion for excellent local rings. We give examples to show that the analogue does not hold for surjective base change. |
---|---|
ISSN: | 2331-8422 |