Rings Over Which Cyclics are Direct Sums of Projective and CS or Noetherian
R is called a right WV -ring if each simple right R-module is injective relative to proper cyclics. If R is a right WV -ring, then R is right uniform or a right V -ring. It is shown that for a right WV-ring R, R is right noetherian if and only if each right cyclic module is a direct sum of a project...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | R is called a right WV -ring if each simple right R-module is injective relative to proper cyclics. If R is a right WV -ring, then R is right uniform or a right V -ring. It is shown that for a right WV-ring R, R is right noetherian if and only if each right cyclic module is a direct sum of a projective module and a CS or noetherian module. For a finitely generated module M with projective socle over a V -ring R such that every subfactor of M is a direct sum of a projective module and a CS or noetherian module, we show M = X \oplus T, where X is semisimple and T is noetherian with zero socle. In the case that M = R, we get R = S \oplus T, where S is a semisimple artinian ring, and T is a direct sum of right noetherian simple rings with zero socle. In addition, if R is a von Neumann regular ring, then it is semisimple artinian. |
---|---|
ISSN: | 2331-8422 |