On the number of zeros of Melnikov functions

We provide an effective uniform upper bond for the number of zeros of the first non-vanishing Melnikov function of a polynomial perturbations of a planar polynomial Hamiltonian vector field. The bound depends on degrees of the field and of the perturbation, and on the order \(k\) of the Melnikov fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-07
Hauptverfasser: Novikov, Dmitry, Benditkis, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide an effective uniform upper bond for the number of zeros of the first non-vanishing Melnikov function of a polynomial perturbations of a planar polynomial Hamiltonian vector field. The bound depends on degrees of the field and of the perturbation, and on the order \(k\) of the Melnikov function. The generic case \(k=1\) was considered by Binyamini, Novikov and Yakovenko (\cite{BNY-Inf16}). The bound follows from an effective construction of the Gauss-Manin connection for iterated integrals.
ISSN:2331-8422