Balanced Combinations of Solutions in Multi-Objective Optimization
For every list of integers x_1, ..., x_m there is some j such that x_1 + ... + x_j - x_{j+1} - ... - x_m \approx 0. So the list can be nearly balanced and for this we only need one alternation between addition and subtraction. But what if the x_i are k-dimensional integer vectors? Using results from...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For every list of integers x_1, ..., x_m there is some j such that x_1 + ... + x_j - x_{j+1} - ... - x_m \approx 0. So the list can be nearly balanced and for this we only need one alternation between addition and subtraction. But what if the x_i are k-dimensional integer vectors? Using results from topological degree theory we show that balancing is still possible, now with k alternations. This result is useful in multi-objective optimization, as it allows a polynomial-time computable balance of two alternatives with conflicting costs. The application to two multi-objective optimization problems yields the following results: - A randomized 1/2-approximation for multi-objective maximum asymmetric traveling salesman, which improves and simplifies the best known approximation for this problem. - A deterministic 1/2-approximation for multi-objective maximum weighted satisfiability. |
---|---|
ISSN: | 2331-8422 |