Information erasure lurking behind measures of complexity

Complex systems are found in most branches of science. It is still argued how to best quantify their complexity and to what end. One prominent measure of complexity (the statistical complexity) has an operational meaning in terms of the amount of resources needed to forecasting a system's behav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-10
Hauptverfasser: Wiesner, Karoline, Gu, Mile, Rieper, Elisabeth, Vedral, Vlatko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex systems are found in most branches of science. It is still argued how to best quantify their complexity and to what end. One prominent measure of complexity (the statistical complexity) has an operational meaning in terms of the amount of resources needed to forecasting a system's behaviour. Another one (the effective measure complexity, aka excess entropy) is a measure of mutual information stored in the system proper. We show that for any given system the two measures differ by the amount of information erased during forecasting. We interpret the difference as inefficiency of a given model. We find a bound to the ratio of the two measures defined as information-processing efficiency, in analogy to the second law of thermodynamics. This new link between two prominent measures of complexity provides a quantitative criterion for good models of complex systems, namely those with little information erasure.
ISSN:2331-8422