On integer radii coin representations of the wheel graph
A {\em flower} is a coin graph representation of the wheel graph. A {\em petal} of the wheel graph is an edge to the center vertex. In this paper we investigate flowers whose coins have integer radii. For an \(n\)-petaled flower we show there is a unique irreducible polynomial \(P_n\) in \(n\) varia...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A {\em flower} is a coin graph representation of the wheel graph. A {\em petal} of the wheel graph is an edge to the center vertex. In this paper we investigate flowers whose coins have integer radii. For an \(n\)-petaled flower we show there is a unique irreducible polynomial \(P_n\) in \(n\) variables over the integers \(\ints\), the affine variety of which contains the cosines of the internal angles formed by the petals of the flower. We also establish a recursion that these irreducible polynomials satisfy. Using the polynomials \(P_n\), we develop a parameterization for all the integer radii of the coins of the 3-petal flower. |
---|---|
ISSN: | 2331-8422 |