Spectral flow, index and the signature operator

We relate the spectral flow to the index for paths of selfadjoint Breuer-Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin-Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-11
Hauptverfasser: Azzali, Sara, Wahl, Charlotte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Azzali, Sara
Wahl, Charlotte
description We relate the spectral flow to the index for paths of selfadjoint Breuer-Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin-Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a foliated manifold when the metric is varied. We conclude that the tangential signature of a foliated manifold with boundary does not depend on the metric. In the Appendix we reconsider integral formulas for the spectral flow of paths of bounded operators.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087072824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087072824</sourcerecordid><originalsourceid>FETCH-proquest_journals_20870728243</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxy4WoyX1mQXxV33EuxVW0ISLyn6-Dr4AE7_8P0zUaBSu8rUiAtRpjRKKXGvsWlUIbaXSLfM1kHvwmsDg-_oDdZ3kB8Eabh7mycmCJHY5sArMe-tS1T-uhTr0_F6OFeRw3OilNsxTOy_1KI0Wmo0WKv_rg8mUDKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087072824</pqid></control><display><type>article</type><title>Spectral flow, index and the signature operator</title><source>Free E- Journals</source><creator>Azzali, Sara ; Wahl, Charlotte</creator><creatorcontrib>Azzali, Sara ; Wahl, Charlotte</creatorcontrib><description>We relate the spectral flow to the index for paths of selfadjoint Breuer-Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin-Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a foliated manifold when the metric is varied. We conclude that the tangential signature of a foliated manifold with boundary does not depend on the metric. In the Appendix we reconsider integral formulas for the spectral flow of paths of bounded operators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds ; Operators (mathematics) ; Spectra</subject><ispartof>arXiv.org, 2009-11</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Azzali, Sara</creatorcontrib><creatorcontrib>Wahl, Charlotte</creatorcontrib><title>Spectral flow, index and the signature operator</title><title>arXiv.org</title><description>We relate the spectral flow to the index for paths of selfadjoint Breuer-Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin-Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a foliated manifold when the metric is varied. We conclude that the tangential signature of a foliated manifold with boundary does not depend on the metric. In the Appendix we reconsider integral formulas for the spectral flow of paths of bounded operators.</description><subject>Manifolds</subject><subject>Operators (mathematics)</subject><subject>Spectra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxy4WoyX1mQXxV33EuxVW0ISLyn6-Dr4AE7_8P0zUaBSu8rUiAtRpjRKKXGvsWlUIbaXSLfM1kHvwmsDg-_oDdZ3kB8Eabh7mycmCJHY5sArMe-tS1T-uhTr0_F6OFeRw3OilNsxTOy_1KI0Wmo0WKv_rg8mUDKw</recordid><startdate>20091115</startdate><enddate>20091115</enddate><creator>Azzali, Sara</creator><creator>Wahl, Charlotte</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091115</creationdate><title>Spectral flow, index and the signature operator</title><author>Azzali, Sara ; Wahl, Charlotte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20870728243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Manifolds</topic><topic>Operators (mathematics)</topic><topic>Spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Azzali, Sara</creatorcontrib><creatorcontrib>Wahl, Charlotte</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzali, Sara</au><au>Wahl, Charlotte</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spectral flow, index and the signature operator</atitle><jtitle>arXiv.org</jtitle><date>2009-11-15</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>We relate the spectral flow to the index for paths of selfadjoint Breuer-Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin-Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a foliated manifold when the metric is varied. We conclude that the tangential signature of a foliated manifold with boundary does not depend on the metric. In the Appendix we reconsider integral formulas for the spectral flow of paths of bounded operators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087072824
source Free E- Journals
subjects Manifolds
Operators (mathematics)
Spectra
title Spectral flow, index and the signature operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spectral%20flow,%20index%20and%20the%20signature%20operator&rft.jtitle=arXiv.org&rft.au=Azzali,%20Sara&rft.date=2009-11-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087072824%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087072824&rft_id=info:pmid/&rfr_iscdi=true