Spectral flow, index and the signature operator
We relate the spectral flow to the index for paths of selfadjoint Breuer-Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin-Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a f...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We relate the spectral flow to the index for paths of selfadjoint Breuer-Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin-Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a foliated manifold when the metric is varied. We conclude that the tangential signature of a foliated manifold with boundary does not depend on the metric. In the Appendix we reconsider integral formulas for the spectral flow of paths of bounded operators. |
---|---|
ISSN: | 2331-8422 |