The unstable integral homology of the mapping class groups of a surface with boundary

We construct a graph complex calculating the integral ho- mology of the bordered mapping class groups. We compute the ho- mology of the bordered mapping class groups of various surfaces. Using the circle action on this graph complex, we build a double complex and a spectral sequence converging to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-11
1. Verfasser: Godin, Veronique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a graph complex calculating the integral ho- mology of the bordered mapping class groups. We compute the ho- mology of the bordered mapping class groups of various surfaces. Using the circle action on this graph complex, we build a double complex and a spectral sequence converging to the homology of the unbordered mapping class groups. We compute the homology of the punctured mapping class groups associated to certain surfaces. Finally, we use Miller's operad to get the first Kudo-Araki and Browder operations on our graph complex. We also consider an unstable version of the higher Kudo-Araki-Dyer-Lashoff operations.
ISSN:2331-8422