Every longest circuit of a 3-connected, \(K_{3,3}\)-minor free graph has a chord
Carsten Thomassen conjectured that every longest circuit in a 3-connected graph has a chord. We prove the conjecture for graphs having no \(K_{3,3}\) minor, and consequently for planar graphs.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carsten Thomassen conjectured that every longest circuit in a 3-connected graph has a chord. We prove the conjecture for graphs having no \(K_{3,3}\) minor, and consequently for planar graphs. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0711.2360 |