Random input helps searching predecessors
We solve the dynamic Predecessor Problem with high probability (whp) in constant time, using only \(n^{1+\delta}\) bits of memory, for any constant \(\delta > 0\). The input keys are random wrt a wider class of the well studied and practically important class of \((f_1, f_2)\)-smooth distribution...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We solve the dynamic Predecessor Problem with high probability (whp) in constant time, using only \(n^{1+\delta}\) bits of memory, for any constant \(\delta > 0\). The input keys are random wrt a wider class of the well studied and practically important class of \((f_1, f_2)\)-smooth distributions introduced in \cite{and:mat}. It achieves O(1) whp amortized time. Its worst-case time is \(O(\sqrt{\frac{\log n}{\log \log n}})\). Also, we prove whp \(O(\log \log \log n)\) time using only \(n^{1+ \frac{1}{\log \log n}}= n^{1+o(1)}\) bits. Finally, we show whp \(O(\log \log n)\) time using O(n) space. |
---|---|
ISSN: | 2331-8422 |