Unimodality questions for integrally closed lattice polytopes

It is a famous open question whether every integrally closed reflexive polytope has a unimodal Ehrhart delta-vector. We generalize this question to arbitrary integrally closed lattice polytopes and we prove unimodality for the delta-vector of lattice parallelepipeds. This is the first nontrivial cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-10
Hauptverfasser: Schepers, Jan, Leen Van Langenhoven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Schepers, Jan
Leen Van Langenhoven
description It is a famous open question whether every integrally closed reflexive polytope has a unimodal Ehrhart delta-vector. We generalize this question to arbitrary integrally closed lattice polytopes and we prove unimodality for the delta-vector of lattice parallelepipeds. This is the first nontrivial class of integrally closed polytopes. Moreover, we suggest a new approach to the problem for reflexive polytopes via triangulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086889447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086889447</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868894473</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAIMgWLR_CHguxCRt48GTKD5AzyW0aUlZszWbHvp7RXyApznMMCuWSaUOhdFSblhONAohZFXLslQZOz2Cf2JnwaeFv2ZHyWMg3mPkPiQ3RAuw8BaQXMfBpuRbxyeEJeHkaMfWvQVy-Y9btr9e7udbMUX8zpoR5xg-qpHCVMYcta7Vf9UbEJU5PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086889447</pqid></control><display><type>article</type><title>Unimodality questions for integrally closed lattice polytopes</title><source>Free E- Journals</source><creator>Schepers, Jan ; Leen Van Langenhoven</creator><creatorcontrib>Schepers, Jan ; Leen Van Langenhoven</creatorcontrib><description>It is a famous open question whether every integrally closed reflexive polytope has a unimodal Ehrhart delta-vector. We generalize this question to arbitrary integrally closed lattice polytopes and we prove unimodality for the delta-vector of lattice parallelepipeds. This is the first nontrivial class of integrally closed polytopes. Moreover, we suggest a new approach to the problem for reflexive polytopes via triangulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Parallelepipeds ; Polytopes</subject><ispartof>arXiv.org, 2011-10</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Schepers, Jan</creatorcontrib><creatorcontrib>Leen Van Langenhoven</creatorcontrib><title>Unimodality questions for integrally closed lattice polytopes</title><title>arXiv.org</title><description>It is a famous open question whether every integrally closed reflexive polytope has a unimodal Ehrhart delta-vector. We generalize this question to arbitrary integrally closed lattice polytopes and we prove unimodality for the delta-vector of lattice parallelepipeds. This is the first nontrivial class of integrally closed polytopes. Moreover, we suggest a new approach to the problem for reflexive polytopes via triangulations.</description><subject>Parallelepipeds</subject><subject>Polytopes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEEKwjAQAIMgWLR_CHguxCRt48GTKD5AzyW0aUlZszWbHvp7RXyApznMMCuWSaUOhdFSblhONAohZFXLslQZOz2Cf2JnwaeFv2ZHyWMg3mPkPiQ3RAuw8BaQXMfBpuRbxyeEJeHkaMfWvQVy-Y9btr9e7udbMUX8zpoR5xg-qpHCVMYcta7Vf9UbEJU5PQ</recordid><startdate>20111017</startdate><enddate>20111017</enddate><creator>Schepers, Jan</creator><creator>Leen Van Langenhoven</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20111017</creationdate><title>Unimodality questions for integrally closed lattice polytopes</title><author>Schepers, Jan ; Leen Van Langenhoven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868894473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Parallelepipeds</topic><topic>Polytopes</topic><toplevel>online_resources</toplevel><creatorcontrib>Schepers, Jan</creatorcontrib><creatorcontrib>Leen Van Langenhoven</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schepers, Jan</au><au>Leen Van Langenhoven</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unimodality questions for integrally closed lattice polytopes</atitle><jtitle>arXiv.org</jtitle><date>2011-10-17</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>It is a famous open question whether every integrally closed reflexive polytope has a unimodal Ehrhart delta-vector. We generalize this question to arbitrary integrally closed lattice polytopes and we prove unimodality for the delta-vector of lattice parallelepipeds. This is the first nontrivial class of integrally closed polytopes. Moreover, we suggest a new approach to the problem for reflexive polytopes via triangulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086889447
source Free E- Journals
subjects Parallelepipeds
Polytopes
title Unimodality questions for integrally closed lattice polytopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unimodality%20questions%20for%20integrally%20closed%20lattice%20polytopes&rft.jtitle=arXiv.org&rft.au=Schepers,%20Jan&rft.date=2011-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086889447%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086889447&rft_id=info:pmid/&rfr_iscdi=true